Overview

Name: Using Cover Crops to Facilitate the Transition to Continuous No-Till
Location/Terrain: Indiana and Ohio
Crop(s): Cover crops
Nutrient(s): Soil health and nutrient content
Rationale: Cover crops can be used to ease farmers into the transition to a continuous no-till system.

Issue(s) of Concern/Challenges:

Despite the proven economic and environmental benefits, some farmers remain hesitant to fully adopt no-till farming techniques.

Practice Objectives:

The objective of this project is to help farmers transition to a Continuous No-Till system (CNT) through the use of cover crops. The project addresses obstacles and provides support for these farmers during their transition.

Practice Description:

This project activities are to: develop an online and printed cover crop matrix to aid farmers in choosing the correct cover crop; assist six farmers transiting to continuous no till with personalized technical support; host an additional workshop (first one was held in August 2009) featuring the experiences of these six farmers to help promote the use of CNT-cover crops systems; partner with Soil and Water Conservation Districts, farmers, the Natural Resources Conservation Service, university extension services (located at land grant universities that engage with farmers and provide all kinds of farming advice) and the Ohio No-Till Council to host more than 5 workshops for farmers transitioning to CNT; through winter farmer networking meetings, form social support networks for farmers transition to CNT; conduct a Cropping Decisions Survey and conduct extensive soil quality testing to show benefits of cover crops in a CNT system.

Outcomes:

The goal of the project is to increase the number of farmers who use a CNT system. From 2009–2011, through plot demonstrations, soil tests, field days, farmer networks, networking sessions, the Conservation
Tillage and Technology Conference, along with the aid of the Midwest Cover Crop Council Cover Crop Decision Tool and web site and CTIC’s Cover Crop web site, The farmers intend to continue this practice. There were also valuable lessons learned as a result of this project:

- Modifying a farming operation to continuous no-till/cover crop rotation requires specific information and technical support
- Farmers need to transition at their own pace
- Farmers that had access to technical, financial and social support proved most successful
- Farmers learn best about new practices or management from farmers that have successfully adopted those same practices
- Soil tests confirmed that soil quality-improved in a continuous no-till/cover crop rotation after just 2 years

Significance:

This project is significant since it will showcase how farmers can make a more gradual transition to CNT.
Figure 3. Reasons for not using cover crops.

Figure 4. What would encourage you to try some cover crops next season?
Figure 5. Desired characteristics of cover crops.

Figure 6. Challenges of managing cover crops.
We Need your Help

Introduction

Best Practice Summary

Initial Key "Hot Spot" Nutrient Management

The 2009 the World Food Summit on Food Security stated that the world must produce 70 percent more food by 2050 than currently produced to sustain a world population of 9 billion. There is widespread scientific agreement that intensification of food production and fertilizer use will increase nutrient loading to already-stressed coastal ecosystems, which is directly linked to "dead zones" of low oxygen. These hypoxic "dead zones" caused by nutrient pollution worldwide.

Proper nutrient management best practices must be scaled-up to ensure the long-term stewardship, conservation and sustainable management of our soil health and water resources. The Global Environment Facility and UN Environment Programme recently launched a project entitled, "Global Support of Global Nutrient Cycle" to promote nutrient oxygen depletion from land based pollution, in the developing world. The purpose of this project is to build capacity at the country level which fosters effective policy and investment interventions to address the threats to public health, biodiversity and economic growth, and to support of Global Nutrient Cycle.

The 2009 World Food Summit on Food Security stated that the world must produce 70 percent more food by 2050 than currently produced to sustain a world population of 9 billion. There is widespread scientific agreement that intensification of food production and fertilizer use will increase nutrient loading to already-stressed coastal ecosystems, which is directly linked to "dead zones" of low oxygen. These hypoxic "dead zones" caused by nutrient pollution worldwide.

Proper nutrient management best practices must be scaled-up to ensure the long-term stewardship, conservation and sustainable management of our soil health and water resources. The Global Environment Facility and UN Environment Programme recently launched a project entitled, "Global Support of Global Nutrient Cycle" to promote nutrient oxygen depletion from land based pollution, in the developing world. The purpose of this project is to build capacity at the country level which fosters effective policy and investment interventions to address the threats to public health, biodiversity and economic growth, and to support of Global Nutrient Cycle.

We request your assistance to engage experts in the developing world to gather best practices and case studies of successful or unsuccessful practice (in order to draw lessons what needs to be avoided) and project implementation.

Figure 7. Trusted sources of information about cover crops.

Contact Chad Watts, CTIC project director, at Tel: 765-494-9555 or 574-242-0147 or email: watts@ctic.org